

THERMOPLASTIC POLYESTER RESIN

Common features of Crastin® thermoplastic polyester resin include mechanical and physical properties such as stiffness and toughness, heat resistance, friction and wear resistance, excellent surface finishes and good colourability. Crastin® thermoplastic polyester resin has excellent electrical insulation characteristics and high arc-resistant grades are available. Many flame retardant grades have UL recognition (class V-0). Crastin® thermoplastic polyester resin typically has high chemical and heat ageing resistance.

The good melt stability of Crastin® thermoplastic polyester resin normally enables the recycling of properly handled production waste. If recycling is not possible, we recommend, as the preferred option, incineration with energy recovery (-24 kJ/g of base polymer) in appropriately equipped installations. For disposal, local regulations have to be observed.

Crastin® thermoplastic polyester resin typically is used in demanding applications in the electronics, electrical, automotive, mechanical engineering, chemical, domestic appliances and sporting goods industry.

Crastin® SK605 NC010 is a 30% glass fiber reinforced, lubricated polybutylene terephthalate resin for injection moulding.

Product information

Resin Identification	PBT-GF30	ISO 1043
Part Marking Code	>PBT-GF30<	ISO 11469

Rheological properties

Melt volume-flow rate	7	cm ³ /10min	ISO 1133
Temperature	250	°C	
Load	2.16	kg	
Melt mass-flow rate	10	g/10min	ISO 1133
Melt mass-flow rate, Temperature	250	°C	
Melt mass-flow rate, Load	2.16	kg	
Viscosity number	100	cm ³ /g	ISO 307, 1628
Intrinsic viscosity	0.85		ISO 307, 1628
Moulding shrinkage, parallel	0.3	%	ISO 294-4, 2577
Moulding shrinkage, normal	1.1	%	ISO 294-4, 2577
Postmoulding shrinkage, normal, 48h at 80°C	0.2	%	ISO 294-4
Postmoulding shrinkage, parallel, 48h at 80°C	0.1	%	ISO 294-4

Typical mechanical properties

Typical mechanical properties			
Tensile modulus	10000	MPa	ISO 527-1/-2
Tensile stress at break, 5mm/min	140	MPa	ISO 527-1/-2
Tensile strain at break, 5mm/min	2.7	%	ISO 527-1/-2
Flexural modulus	9000	MPa	ISO 178
Flexural strength	200	MPa	ISO 178
Tensile creep modulus, 1h	9000	MPa	ISO 899-1
Tensile creep modulus, 1000h	6600	MPa	ISO 899-1
Charpy impact strength, 23°C	70	kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C	75	kJ/m²	ISO 179/1eU
Charpy impact strength, -40°C	75	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C	10	kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C	11	kJ/m²	ISO 179/1eA
Charpy notched impact strength, -40°C	10	kJ/m²	ISO 179/1eA

Printed: 2025-05-30 Page: 1 of 19

THERMOPLASTIC POLYESTER RESIN

10.0 10.0 60 55 55	kJ/m ² kJ/m ² kJ/m ² kJ/m ²	ISO 180/1A ISO 180/1A ISO 180/1A ISO 180/1U ISO 180/1U ISO 180/1U ISO 2039-1
55 205 220 215 210	°C °C °C °C	ISO 11357-1/-3 ISO 11357-1/-3 ISO 75-1/-2 ISO 75-1/-2 ISO 306 IEC 60695-10-2 ISO 11359-1/-2
90	E-6/K	ISO 11359-1/-2
1730 130 130 130 130 130 130 130 130 130	J/(kg K) °C	ISO 22007-2 ISO 22007-4 UL 746B UL 746B
1.5 yes HB 0.75 yes 19 725 725 750 750	mm class mm % °C °C °C °C °C	IEC 60695-11-10 IEC 60695-11-10 UL 94 IEC 60695-11-10 IEC 60695-11-10 UL 94 ISO 4589-1/-2 IEC 60695-2-12 IEC 60695-2-12 IEC 60695-2-13 IEC 60695-2-13 IEC 60695-2-13
	10.0 10.0 60 55 55 205 0.34 224 55 220 215 210 30 90 0.28 1730 130 130 130 130 130 130 130 130 130 1	224 °C 55 °C 205 °C 220 °C 215 °C 210 °C 210 °C 30 E-6/K 90 E-6/K 90 E-6/K 0.28 W/(m K) 1730 J/(kg K) 130 °C

Printed: 2025-05-30 Page: 2 of 19

THERMOPLASTIC POLYESTER RESIN

Glow Wire Ignition Temperature, 2.0mm	750 °C	IEC 60695-2-13
Glow Wire Ignition Temperature, 3.0mm	775 °C	IEC 60695-2-13
FMVSS Class	В	ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm	28 mm/min	ISO 3795 (FMVSS 302)

Electrical properties

Relative permittivity, 100Hz	3.9		IEC 62631-2-1
Relative permittivity, 1MHz	3.8		IEC 62631-2-1
Dissipation factor, 100Hz	7.5	E-4	IEC 62631-2-1
Dissipation factor, 1MHz	180	E-4	IEC 62631-2-1
Volume resistivity	>1E13	Ohm.m	IEC 62631-3-1
Surface resistivity	>1E15	Ohm	IEC 62631-3-2
Electric strength	38	kV/mm	IEC 60243-1
Comparative tracking index	400		IEC 60112
Electric Strength, Short Time, 2mm	17	kV/mm	IEC 60243-1

Physical/Other properties

Humidity absorption, 2mm	0.15 %	Sim. to ISO 62
Water absorption, 2mm	0.35 %	Sim. to ISO 62
Density	1530 kg/m ³	ISO 1183
Density of melt	1360 kg/m³	

VDA Properties

Odour	3 class	VDA 270
Fogging, F-value (refraction)	99 %	ISO 6452

Injection

Drying Recommended	yes	
Drying Temperature	120	°C
Drying Time, Dehumidified Dryer	2 - 4	h
Processing Moisture Content	≤0.04	%
Melt Temperature Optimum	250	°C
Min. melt temperature	240	°C
Max. melt temperature	260	°C
Mold Temperature Optimum	80	°C
Min. mould temperature	60	°C
Max. mould temperature	130	°C
Hold pressure range	≥60	MPa
Hold pressure time	3	s/mm
Back pressure	As low as	MPa
	possible	

Characteristics

Ejection temperature

Processing Injection Moulding, Extrusion

Delivery form Pellets

Additives Release agent

Printed: 2025-05-30 Page: 3 of 19

180 °C

THERMOPLASTIC POLYESTER RESIN

Automotive

OEM STANDARD ADDITIONAL INFORMATION

 BMW
 GS93016-PBT-GF30

 Bosch
 N28 BN07-GF023

 Ford
 WSS-M4D725-B1

General Motors GMW16733P-PBT-GF30 Natural

HyundaiMS941-03 Type F-5Mercedes-BenzDBL5403.51 PBT-GF30

NIO NIO-SM.51.010

Renault-Nissan FRM, No Spec, Special Part Approval, See

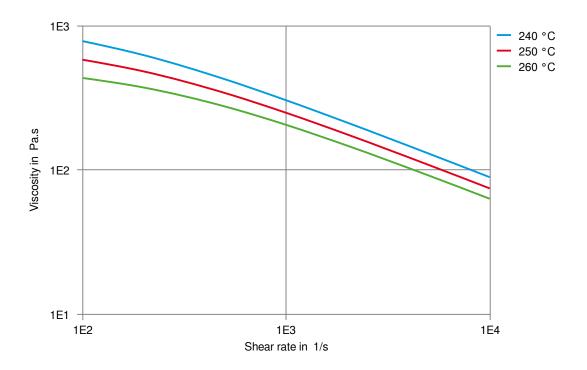
Your CE Account Manager.

Renault-Nissan FRM, No Spec, Special Part Approval, See

Your CE Account Manager.

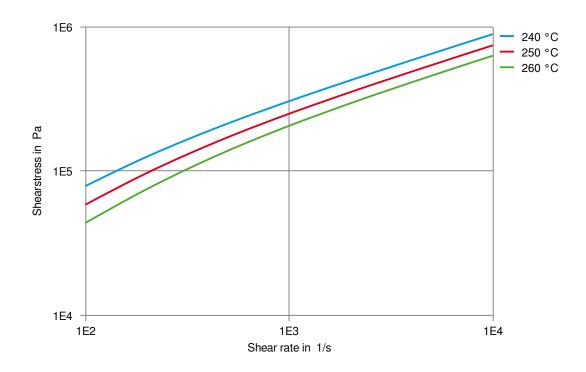
Stellantis MS.90181 / PBT.GF30.8000T.7C.HS CPN4675, CPN2252

Stellantis - ChryslerMS.50103 / CPN-2252NaturalStellantis - ChryslerMS.50103 / CPN-4675Natural


Printed: 2025-05-30 Page: 4 of 19

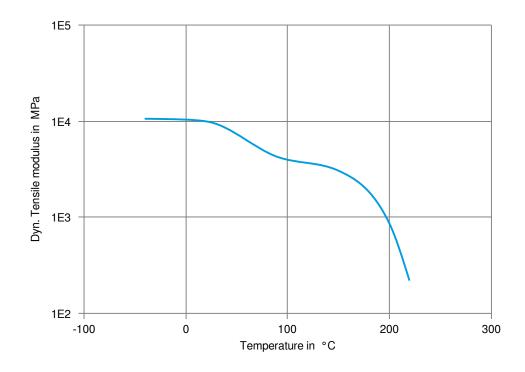
THERMOPLASTIC POLYESTER RESIN

Viscosity-shear rate


Printed: 2025-05-30 Page: 5 of 19

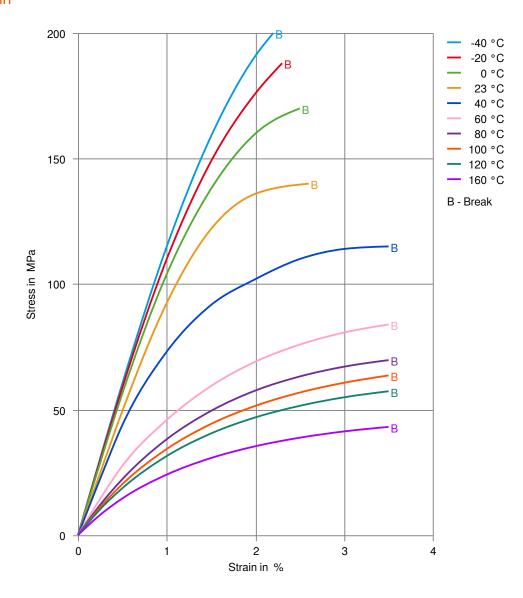
THERMOPLASTIC POLYESTER RESIN

Shearstress-shear rate


Printed: 2025-05-30 Page: 6 of 19

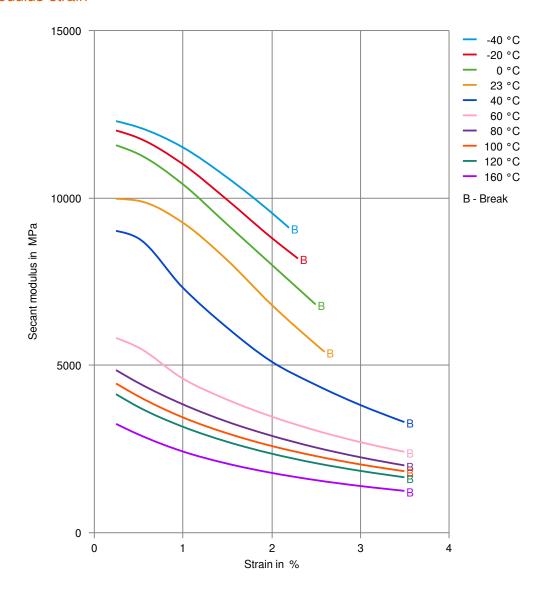
THERMOPLASTIC POLYESTER RESIN

Dynamic Tensile modulus-temperature


Printed: 2025-05-30 Page: 7 of 19

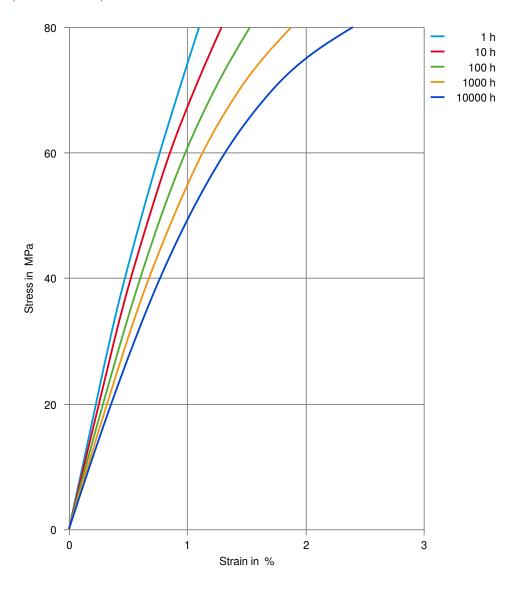
THERMOPLASTIC POLYESTER RESIN

Stress-strain


Printed: 2025-05-30 Page: 8 of 19

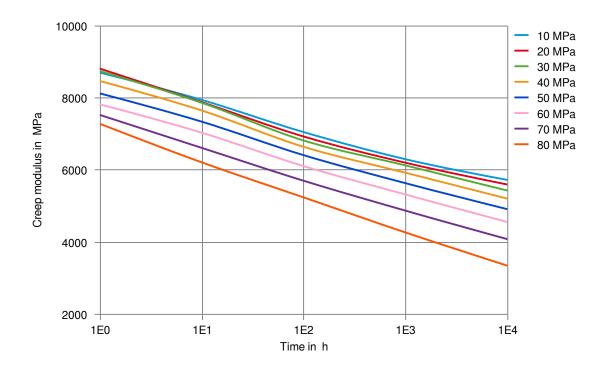
THERMOPLASTIC POLYESTER RESIN

Secant modulus-strain


Printed: 2025-05-30 Page: 9 of 19

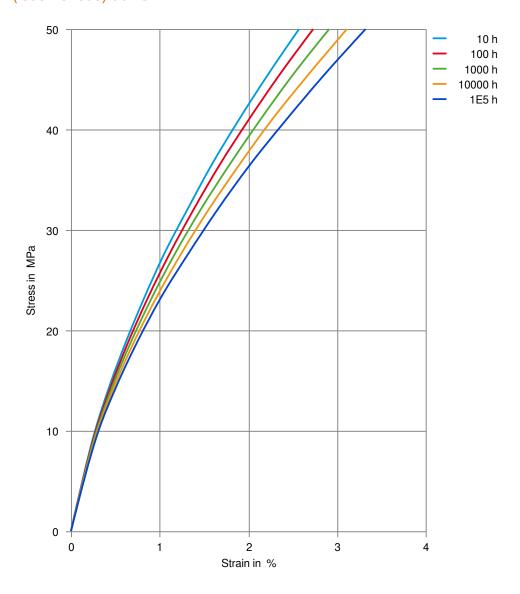
THERMOPLASTIC POLYESTER RESIN

Stress-strain (isochronous) 23°C


Printed: 2025-05-30 Page: 10 of 19

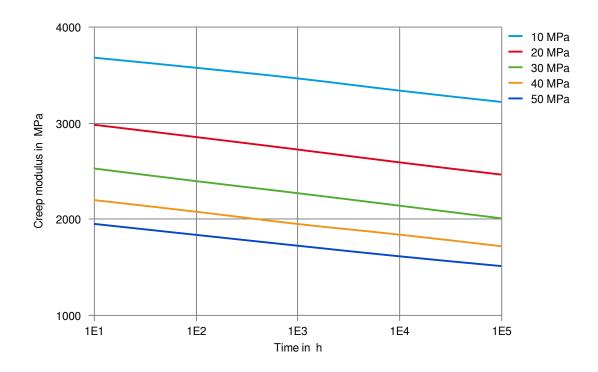
THERMOPLASTIC POLYESTER RESIN

Creep modulus-time 23°C


Printed: 2025-05-30 Page: 11 of 19

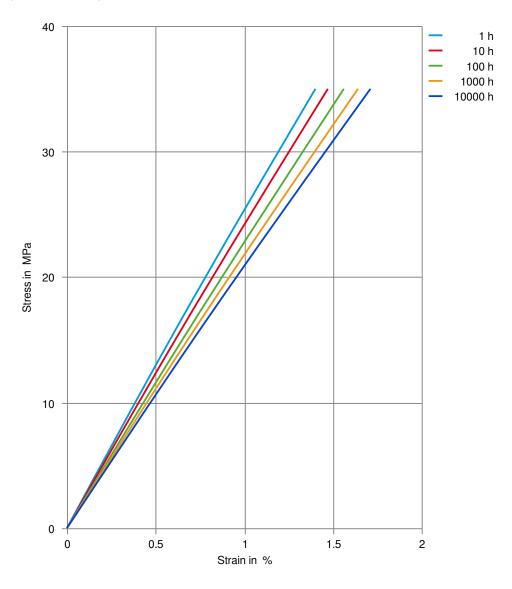
THERMOPLASTIC POLYESTER RESIN

Stress-strain (isochronous) 90°C


Printed: 2025-05-30 Page: 12 of 19

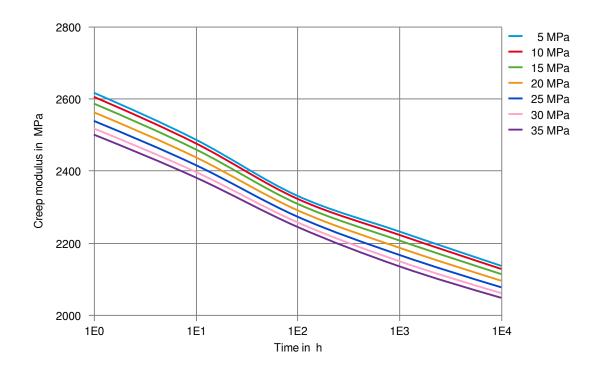
THERMOPLASTIC POLYESTER RESIN

Creep modulus-time 90°C


Printed: 2025-05-30 Page: 13 of 19

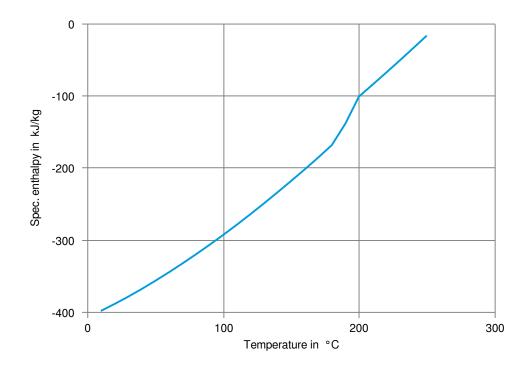
THERMOPLASTIC POLYESTER RESIN

Stress-strain (isochronous) 120°C


Printed: 2025-05-30 Page: 14 of 19

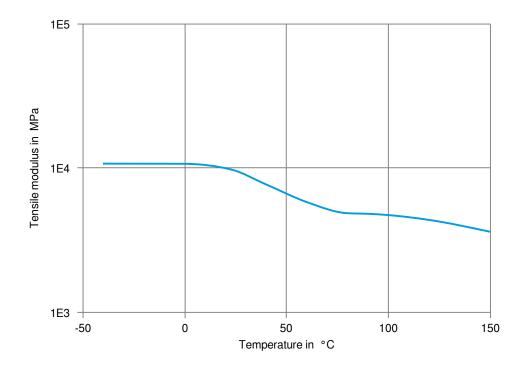
THERMOPLASTIC POLYESTER RESIN

Creep modulus-time 120°C


Printed: 2025-05-30 Page: 15 of 19

THERMOPLASTIC POLYESTER RESIN

Spec. enthalpy/mass-temp. (DSC)


Printed: 2025-05-30 Page: 16 of 19

THERMOPLASTIC POLYESTER RESIN

Tensile modulus-temperature

Printed: 2025-05-30 Page: 17 of 19

THERMOPLASTIC POLYESTER RESIN

Chemical Media Resistance

Acids

- ✓ Acetic Acid (5% by mass), 23°C
- ✓ Citric Acid solution (10% by mass), 23°C
- ✓ Lactic Acid (10% by mass), 23°C
- X Hydrochloric Acid (36% by mass), 23°C
- X Nitric Acid (40% by mass), 23°C
- X Sulfuric Acid (38% by mass), 23°C
- X Sulfuric Acid (5% by mass), 23°C
- X Chromic Acid solution (40% by mass), 23°C

Bases

- X Sodium Hydroxide solution (35% by mass), 23°C
- ✓ Sodium Hydroxide solution (1% by mass), 23°C
- ✓ Ammonium Hydroxide solution (10% by mass), 23°C

Alcohols

- ✓ Isopropyl alcohol, 23°C
- ✓ Methanol, 23°C
- ✓ Ethanol, 23°C

Hydrocarbons

- ✓ n-Hexane, 23°C
- ✓ Toluene, 23°C
- ✓ iso-Octane, 23°C

Ketones

✓ Acetone, 23°C

Ethers

✓ Diethyl ether, 23°C

Mineral oils

- ✓ SAE 10W40 multigrade motor oil, 23°C
- X SAE 10W40 multigrade motor oil, 130°C
- ★ SAE 80/90 hypoid-gear oil, 130°C
- ✓ Insulating Oil, 23°C
- X Motor oil OS206 304 Ref.Eng.Oil, ISP, 135°C
- X Automatic hypoid-gear oil Shell Donax TX, 135°C
- X Hydraulic oil Pentosin CHF 202, 125°C

Standard Fuels

- X ISO 1817 Liquid 1 E5, 60°C
- X ISO 1817 Liquid 2 M15E4, 60°C
- X ISO 1817 Liquid 3 M3E7, 60°C
- X ISO 1817 Liquid 4 M15, 60°C
- ✓ Standard fuel without alcohol (pref. ISO 1817 Liquid C), 23°C
- ✓ Standard fuel with alcohol (pref. ISO 1817 Liquid 4), 23°C
- ✓ Diesel fuel (pref. ISO 1817 Liquid F), 23°C
- ✓ Diesel fuel (pref. ISO 1817 Liquid F), 90°C
- ➤ Diesel fuel (pref. ISO 1817 Liquid F), >90°C

Printed: 2025-05-30 Page: 18 of 19

THERMOPLASTIC POLYESTER RESIN

Salt solutions

- ✓ Sodium Chloride solution (10% by mass), 23°C
- ✓ Sodium Hypochlorite solution (10% by mass), 23°C
- ✓ Sodium Carbonate solution (20% by mass), 23°C
- ✓ Sodium Carbonate solution (2% by mass), 23°C
- ✓ Zinc Chloride solution (50% by mass), 23°C

Other

- ✓ Ethyl Acetate, 23°C
- X Hydrogen peroxide, 23°C
- X DOT No. 4 Brake fluid, 130°C
- **★** Ethylene Glycol (50% by mass) in water, 108°C
- √ 1% nonylphenoxy-polyethyleneoxy ethanol in water, 23°C
- ✓ 50% Oleic acid + 50% Olive Oil, 23°C
- ✓ Water, 23°C
- X Water, 90°C
- ✓ Phenol solution (5% by mass), 23°C

Symbols used:

possibly resistant

Defined as: Supplier has sufficient indication that contact with chemical can be potentially accepted under the intended use conditions and expected service life. Criteria for assessment have to be indicated (e.g. surface aspect, volume change, property change).

x not recommended - see explanation

Defined as: Not recommended for general use. However, short-term exposure under certain restricted conditions could be acceptable (e.g. fast cleaning with thorough rinsing, spills, wiping, vapor exposure).

Printed: 2025-05-30 Page: 19 of 19

Revised: 2025-04-17 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.